
Number 2 - October 2020 Problems

November 21, 2020

Problem 5A. Proposed by Alexander Monteith-Pistor

Let 4ABC be an isosceles right triangle with right angle at A and incenter
I. The point P is randomly chosen inside 4ABC. Find the probability that
4PAI is an acute triangle (all of its angles are acute).
Solution:
4ABC is isosceles therefore I lies on the altitude of 4ABC passing through
A. Let B1, C1 be on AB, AC respectively such that I lies on B1C1 and B1C1

is parallel to BC. Then ]AIP is acute if and only if I lies inside triangle AB1C1.

Let AB and AC be tangent to the incircle of 4ABC at B2 and C2 respec-
tively. Since B2I = C2I, AB2IC2 is a square. Thus, ]API is acute if and only
if I lies outside of C, which we define as the circle with diameter AI. Note that
]PAI will be acute regardless of the position of P .
It follows that 4API is acute if and only if P is inside 4AB1C1 and outside
C. Let 4ABC have inradius r and area k. Note k = (

√
2 + 1)2r2 (4ABC is

similar to 4AB2C2). Since AB2IC2 is a square with side length r, AI =
√

2r.
Further, the altitude of 4ABC passing through A (and thus through I) has
length (

√
2 + 1)r. Then, using similarity between 4ABC, 4AB1C1, 4AB2C2,

the area of B1B2C2C1 is( √
2√

2 + 1

)2

k −

( √
2

2(
√

2 + 1)

)2

k =
3

2(
√

2 + 1)2
k

Note that4AB2C2 is contained within its circumcircle, C. Therefore, the region
contained in 4AB1C1 but not in C has area

3

2(
√

2 + 1)2
k − 1

2

(√
2

2
r

)2

π

Hence, the probability that 4API is acute is

1

k

(
3

2(
√

2 + 1)2
k − 1

4
r2π

)
=

6− π
4(
√

2 + 1)2
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Problem 11A. Proposed by Luca Tu

Call a number C unlucky if there exists a multiset S ⊆ N∗ such that the sum
of all the elements in S is 169, and the product of all the elements in S is C.
Find the largest unlucky number. (A multiset is a set that can have duplicate
elements.)
Solution:

This could seem intimidating at first, but what the problem is basically
asking is for the solver to find a set S such that all its elements sum to 169, and
the product is maximized. Now, 169 is quite a big number. We first consider
the same problem with 24 (instead of 169) and observe some of the possibilities:

212 = 4096, 2 · 12 = 24

38 = 6561, 3 · 8 = 24

46 = 4096

55 = 3125 (close enough)

64 = 1296

73 = 343

74 = 2401

83 = 512

(1 can’t be a possibility as it just wastes a unit) These are the “monotonic” sets,
with one number for every element. It seems like 3 is the “best” one, resulting
in the biggest product. Now we prove 3a > a3, using induction.

1. Base Case.
34 = 81 > 64 = 43

2. Induction phase: Assuming that 3·(a−1) > (a−1)3 for some natural number
a > 4.

We want to prove that 3a > a3. Multiply by 3 on both sides of the first
inequality:

3a > 3 · (a− 1)3
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And now, we want to prove that 3 · (a− 1)3 > a3.

LHS− RHS = 3 · (a− 1)3 − a3

= 3 · (a3 − 3a2 + 3a− 1)− a3

= 3a3 − a3 + 3 · (−3a2 + 3a− 1)

= 2a3 − 9a2 + 9a− 3

= (2a3 − 12a2 + 18a) + 3a2 − 9a− 3

= 2a(a− 3)2 + 3(a2 − 3a− 1)

The first term is clearly positive. We will find the x-intercepts of the second
term:

3±
√
{9 + 4

2
=

3 +
√

13

2
<

3 + 4

2
< 3.5

Therefore, a2− 3a− 1 is never negative for a > 3.5, and the second term is also
positive. Hence LHS > RHS, and the inductive step is complete.

Now, we want to prove that monotonic sets of 3, with one or two 2’s, always
maximize the products of the elements (given that the sum of the elements is
fixed).

Consider a set multiset S. Let x ∈ S with x > 3. Then, using the above
result: if x = 3k, replace x with k 3’s to get a better set S′; if x = 3k + 1,
replace x with two 2’s and k − 1 3’s to obtain a better set S′; if x = 3k + 2 ,
replace x with k 3’s and one 2 two get a better set S′. Finally, observe that in-
cluding 1’s is counterproductive (since they contribute nothing to the product)
and 32 > 23. Thus, the best sets contain only 3’s (and maybe one or two 2’s).

Now we know that the optimal set would constitute of only 3’s (and maybe
one or two 2’s). Let put it into context!

169 = 3 · 56 + 1 = 3 · 55 + 2 · 2

Therefore, the biggest unlucky number is 355 · 22.

Problem 12A. Proposed by Luca Tu

In the following calculation, each letter stands for a different digit (e.g. if X = 0
then Y 6= 0)

C L O V E R
+ C R O C U S

V I O L E T

Decode the equation (find the numbers CLOVER, CROCUS and VIOLET).
(Note O in the equation is the letter O and not the digit 0)
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Solution:

Throughout this proof, things in square brackets will be possibilities (they
may or may not be true). First of all, we see that

O + O + [potential carry] = O + [10].

This means that either O = 0 and there’s no carry, or O = 9 and there is a
carry. Also,

E + U + [carry] = E + [10]

so same thing, U = 0 or U = 9.

If O = 9, then U = 0. However,

C + C + [carry] = V, and C + V = L + 10 (Can’t have carry as U = 0).

since L 6= 0, C = 4. Then V = 8, L = 2. Since R + S = T, and we only have 1,
3, 5, 6, 7 not assigned, R = 1, 5, or 6. However, I = R + 3 implies R = 3 (we
only have 1, 3, 5, 6, 7 not assigned). This is clearly a contradiction.

Therefore, O = 0, U = 9.
Then C + C + (carry) = V, and V + C + 1 = L (as U = 9). Hence, C = 1 or
2.

Case 1: C = 1. Either V = 2, L = 4 or V = 3, L = 5.

If V = 2, L = 4. Then R + S = 10 + T, 4 + R = I, we have 3, 5, 6, 7, 8
left. Hence R = 3, I = 7, but the other equation fails.

So V = 3, L = 5. Then R + S = 10 + T, 5 + R = I + 10, we have 2, 4,
6, 7, 8 left. Hence R = 7, I = 2, but the other equation fails.

Case 2: C = 2. Rewrite the equation for clarity:

2 L 0 V E R
+ 2 R 0 C 9 S

V I 0 L E T

we have either V = 4 or V = 5.

If V = 4: Then L = 7, R + S = 10 + T, 7 + R = I, and we have 1, 3, 5,
6, 8 left. Hence R = 1, I = 8, but the other equation fails.

So V = 5. Then L = 8, R + S = 10 + T, 8 + R = 10 + I, and we have
1, 3, 4, 6, 7 left. Either R = 3, I = 1, or R = 6, I = 4. If R = 3, 3 + S = 10 +
T which fails (we have 4, 6, 7 left).
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Therefore, R = 6, I = 4 and 6 + S = 10 + T, we have 1, 3, 7 left. Luck-
ily, S = 7, T = 3 works. Then E = 1 by elimination, and we are done.

The equation is then 280516 + 260297 = 540813. Rewriting the whole thing:

2 8 0 5 1 6
+ 2 6 0 2 9 7

5 4 0 8 1 3

And it does indeed work.

Problem 13A. Proposed by Vedaant Srivastava

Let A1B1C1 be a triangle with A1B1 = 13, B1C1 = 14, C1A1 = 15. Let
Γ1 : (O1, r1) be the incircle of A1B1C1. Construct B2, C2 on sides A1B1 and
A1C1 respectively such that B2C2 ‖ B1C1 and B2C2 is tangent to Γ1.

Now let Γ2 : (O2, r2) be the incircle of 4AB2C2. Construct B3, C3 on sides
AB2, AC2 respectively such that B3C3 ‖ B2C2 and B3C3 is tangent to Γ2.

Continue this process, shading in the circles Γ1,Γ2,Γ3,Γ4, . . . . What is the total
area of the shaded region?
Solution:
Let s be the semiperimeter of A1B1C1. We denote the area of a figure with
square brackets.

First determine the area of Γ1. We have that

r1 = [4A1B1C1]/s = 84/21 = 4

Thus the area of Γ1 is 16π.

Now consider the excircle Γ0 : (O0, r0) of 4A1B1C1 tangent to side B1C1.
By homothety from point A1, observe that

ri+1

ri
=
r1
r0

=
s−B1C1

s
=

21− 14

21
=

1

3

Where the second equality follows from the well-known fact that r
rA

= s−a
s .

This implies that

[Γi+1]

[Γi]
=

(
ri+1

ri

)2

=
1

9

Thus we have
∞∑
i=1

[Γi] = 16π

∞∑
i=0

(
1

9

)i

=
16π

1− 1
9

= 18π

Where the second equality follows from the formula for an infinite geometric
series.
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Problem 14A. Proposed by Vedaant Srivastava

Consider an acute triangle ABC with orthocenter H. Let HA be the reflection
of H over BC. Let E and F be the projections of HA onto AB and AC respec-
tively. Prove that EF bisects HHA.
Solution:
In order to bypass configuration issues, we use directed angles in the follow-
ing proof, where angle measures are measured counterclockwise and taken
(mod 180◦).

Proof. Let D be the projection of HA onto BC.
We have that

∠BHAC = ∠CHB = ∠CHD+∠DHB = ∠ABC+∠BCA = −∠CBA = ∠BAC

So HA lies on the circumcircle of 4ABC.

Now observe that ∠HAEB = ∠HADB = 90◦ so HA, E,B,D are concyclic.
Similarly, ∠HAFC = ∠HADC = 90◦ so HA, F, C,D are concyclic.

This implies that

∠HADE = ∠HABE = ∠HABA = ∠HACA = ∠HADF

So by definition, D,E, F collinear.

Observing that D is the midpoint of HHA, we have that EF bisects HHA at
D, as desired.

Problem 15A. Proposed by Alexander Monteith-Pistor

Let x0 = 0. For n ≥ 1: if xn−1 is even, xn is randomly chosen from the multiples
of 3 between xn−1−10 and xn−1 +10 (inclusive); if xn−1 is odd, xn is randomly
chosen from the multiples of 4 between xn−1 − 10 and xn−1 + 10 (inclusive).
Find the probability that x5 is even.

Problem 16A. Proposed by Nicholas Sullivan

The soccer ball, otherwise known as the truncated icosahedron, is composed of
12 pentagonal faces and 20 hexagonal faces, such that one pentagon and two
hexagons meet at each vertex. If each vertex is labelled with a distinct integer
between 1 and 70, inclusive, show that there must be at least one edge whose
vertices are not relatively prime.
Solution:
Since each vertex borders exactly one pentagon of the truncated icosahedron,
and since there are 12 pentagonal faces, then there must be 60 vertices in total.
If each is labelled with a distinct integer between 1 and 70, then there can be
at most 35 odd vertices, and thus at least 25 even vertices. Each of these 25
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even vertices must belong to at exactly one pentagonal face. By the pigeonhole
principle, since there are 12 pentagonal faces, and 25 even vertices to distribute
between them, there must be at least one pentagonal face with 3 even vertices.
On such a pentagonal face with 3 even vertices, there must be at least one edge
with two even vertices. Thus, there must exist an edge whose vertices are not
relatively prime.

Problem 17A. Proposed by Nikola Milijevic

Express the sum of A and B in simplest form if

A =

√
7 + 2

√
6−

√
7− 2

√
6

and

B = 1 +
1

A+
1

A+
1

A+ . . .

Solution:
If we square A, we get

A2 =

√
7 + 2

√
6
2

− 2

√
7 + 2

√
6

√
7− 2

√
6 +

√
7− 2

√
6
2

= 7 + 2
√

6− 2
√

25 + 7− 2
√

6 = 4

As A is positive, it must mean A = 2. Notice that B = 1 + 1
B+A−1 , so

B2 +AB −B = B +A− 1 + 1

B2 + (A− 2)B −A = 0

B2 − 2 = 0

B =
√

2

So A+B = 2 +
√

2

Problem 18A. Proposed by Andy Kim

Find the probability that a randomly chosen 6-digit palindrome with no digits
equal to 0 is divisible by 13.
Solution:
We represent the six-digit palindrome as abccba. Then,

abccba = a · 105 + b · 104 + c · 103 + c · 102 + b · 101 + a

Noting that 10 ≡ −3 (mod 13), we have
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a · 105 + b · 104 + c · 103 + c · 102 + b · 101 + a (mod 13)

≡ a · (−3)5 + b · (−3)4 + c · (−3)3 + c · (−3)2 + b · (−3)1 + a (mod 13)

≡ − 243a+ 81b− 27c+ 9c− 3b+ a (mod 13)

≡ − 242a+ 78b− 18c (mod 13)

≡ − 8a+ 8c (mod 13)

≡ 8(c− a) (mod 13)

So, since 13 is prime, abccba is divisible by 13 if and only if c− a is divisible
by 13. This can only happen if a = c, so the probability of the palindrome being
divisible by 13 is the probability that a = c, which is 1

9 .

Problem 19A. Proposed by Luca Tu

Solve for x ∈ R: x3 + 10x2 + 25x + 6 = 0 without using Cardano’s formula or
its equivalent. Show your work.
Solution:
If you take a close look at the equation’s coefficients, we see that we can rewrite
it as:

xm2 + (2x2 + 1)m+ x3 + 1 = 0 where m = 5

Therefore, we can find a cleaner equation for x if we take x as the coefficients
and 5 as the variable, m.

m =
−(2x2 + 1)±

√
(2x2 + 1)2 − 4(x3 + 1)x

2x

=
−(2x2 + 1)±

√
4x4 + 4x2 + 1− 4x4 − 4x

2x

=
−(2x2 + 1)±

√
4x2 − 4x+ 1

2x

=
−(2x2 + 1)± (2x− 1)

2x
= 5

Therefore,
−2x2 − 1± (2x− 1) = 10x

Case 1: −2x2 − 1 + (2x− 1) = 10x

−2x2 − 2− 8x = 0

x2 + 4x+ 1 = 0

which gives the solutions x = −2−
√

3 and x =
√

3− 2.

Case 2: −2x2 − 1− (2x− 1) = 10x

−2x2 = 12x
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−2x = 12

x = −6

Hence the solutions for the original are x = −6, x = −2−
√

3, and x =
√

3− 2.

Problem 20A. Proposed by DC

In a cyclic quadrilateral ABCD, P is the intersection of the diagonals and E, M,
G and L are the midpoints on sides AB, BC, CD and DA. By projecting the
medians PE, PM, PG and PL on sides AB, BC, CD and DA, four segments are
obtained: EF, MN, GH and LI. Prove that

AB × FE + CD ×HG = AD × IL+ CB ×MN.

Problem 8B. Proposed by Andy Kim

Let a, b, and c be positive real numbers. Given that abc = 1, prove that

a3 − 1

b2c2
+
b3 − 1

c2a2
+
c3 − 1

a2b2
≥ 0

Solution:

a3 − 1

b2c2
+
b3 − 1

c2a2
+
c3 − 1

a2b2
≥ 0

(a5 − a2) + (b5 − c2) + (c5 − c2) ≥ 0

a5 + b5 + c5 ≥ a2 + b2 + c2

Then, we homogenize the inequality by multiplying the right hand side by abc =
1.

a5 + b5 + c5 ≥ abc(a2 + b2 + c2)

a5 + b5 + c5 ≥ a3bc+ b3ca+ c3ab

Now, the condition abc = 1 can be ignored. From AM-GM, we have

a5 + a5 + a5 + b5 + c5

5
≥

5√
a5a5a5b5c5

3a5 + b5 + c5

5
≥ a3bc (1)
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Similarly, we also have

3b5 + c5 + a5

5
≥ b3ca (2)

3c5 + a5 + b5

5
≥ c3ab (3)

Summing (1), (2), and (3), we obtain the desired inequality.

Problem 11B. Proposed by Max Jiang

Find all complex roots of the polynomial

x8 − 4x7 + 10x6 − 16x5 + 19x4 − 16x3 + 10x2 − 4x+ 1 = 0.

Solution:
The important thing to note about this polynomial is that its coefficients are
”symmetrical” about the x4 term. Let us group the terms by their coefficient
to get

(x8 + 1)− 4(x7 + x) + 10(x6 + x2)− 16(x5 + x3) + 19x4 = 0.

Clearly x = 0 is not a root, so we can safety divide by x4 to get

(x4 +
1

x4
)− 4(x3 +

1

x3
) + 10(x2 +

1

x2
)− 16(x+

1

x
) + 19 = 0.

Now, some computation will yield the following results:

x2 +
1

x2
= (x+

1

x
)2 − 2,

x3 +
1

x3
= (x+

1

x
)3 − 3(x+

1

x
),

x4 +
1

x4
= (x+

1

x
)4 − 4(x2 +

1

x2
)− 6

= (x+
1

x
)4 − 4(x+

1

x
)2 + 2.

Substituting these into our equation as well as y = x+ 1
x gives

(y4 − 4y2 + 2)− 4(y3 − 3y) + 10(y2 − 2)− 16y + 19 = 0

y4 − 4y3 + 6y2 − 4y + 1 = 0

(y − 1)4 = 0.
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Thus, the only solution is y = 1. Finally, we have

x+
1

x
= 1

x2 − x+ 1 = 0

x =
1± i

√
3

2
.

Problem 12B. Proposed by Max Jiang

Instead of an election, Donald and Joe play a grid-coloring game to decide who
gets to be the next president. Given a n×m grid of unit squares, the candidates
will take turns coloring 1×k or k×1 sub-arrays of the grid, where k is a positive
integer, such that no cell in the sub-array is already colored. The last player to
move is declared the winner (at which point the grid will be completely colored).
Find all pairs (n,m) such that the first player to move has a winning strategy.
Solution:
We claim that the first player has a winning strategy for all (m,n) such that
not both numbers are even.

If at least one of m or n is odd, say that is it m without loss of generality,
we see that the first player can color the entire middle vertical column, splitting
the grid into two disjoint m−1

2 ×n grids. Note that at this point, the first player
can copy the second player’s move on the opposite grid. In this way, the two
disjoint grids will always be in the same position after the first player’s turn.
Thus, the first player must also be the one that leaves both grids fully colored.

Otherwise, both m and n are even. Note that there is a bijection that takes
each cell (x, y) to the cell (m + 1 − x, n + 1 − y). This is essentially mapping
each cell to its image under a 180◦ rotation of the grid. Since m and n are even,
every cell is mapped to a different cell.
We see that after every move that the first player makes, the second player can
color the cells colored by the first under the rotation. In this way, the state of
each cell and its image must always be the same after the second player’s turn.
Thus, it is not possible that the image of the first player’s move has already
been colored in a previous turn.
Additionally, any 1×k or k×1 grid does not intersect with its image since they
must exist in distinct columns or rows, respectively. Hence, the second player’s
moves will always be valid.
Since it is always possible for the second player to move after the first player,
only he can make the last move meaning he must win.

Problem 13B. Proposed by Alexander Monteith-Pistor

Let p(x) be a polynomial with integer coefficients satisfying

p(x+ 2020)2020 = p(x2020) + 2020
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Find all possible values of p(0).

Problem 14B. Proposed by Ken Jiang

For integer n > 1, determine which expression is greater: nn! or (nn)!.
Solution:
Consider the base-n logarithms of the expressions logn n

n! = n! and logn(nn)! =
nn∑
i=1

logn i. All but the first n terms in the summation are greater than 1, so it

suffices to prove that

nn − n > n!

n(nn−1 − 1) > n!

nn−1 − 1 > (n− 1)!

nn−1 − 1 > (n− 1)n−1 > (n− 1)!

Thus, since logn n
n! < logn(nn)!, nn! < (nn)!.

Problem 15B. Proposed by Ken Jiang

Let fn(x) be a function such that:

fn(x) =


1 if x ≤ n,

x−1∑
i=x−n

fn(i) if x > n.

Prove that
∞∑
i=1

fn(i)

2i
= n

Solution:
Consider the sum

n−1∑
j=0

∞∑
i=1

fn(i)

2i

2j

This can also be written as

∞∑
i=1

i∑
j=i−n+1

fn(j)

2i

Where we let fn(j) = 0 for j ≤ 0. But we know this is just

∞∑
i=n

fn(i+ 1)

2i
+

n−1∑
i=1

i

2i
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The first summation in this expression is just double our original sum less a few
terms. Specifically,

∞∑
i=n

fn(i+ 1)

2i
= 2

( ∞∑
i=1

fn(i)

2i
−

n−1∑
i=1

fn(i)

2i

)

Since fn(i) = 1 for i < n, the first few terms sum to
2n − 1

2n
. So

∞∑
i=n

fn(i+ 1)

2i
= 2

( ∞∑
i=1

fn(i)

2i
− 2n − 1

2n

)

To evaluate
n−1∑
i=1

i

2i
, we consider its double:

2

n−1∑
i=1

i

2i
=

n−1∑
i=1

i

2i−1
=

n−2∑
i=0

i+ 1

2i

n−1∑
i=1

i

2i
=

n−2∑
i=0

i+ 1

2i
−

n−1∑
i=1

i

2i
=

1

1
+

n−2∑
i=1

1

2i
− n− 1

2n−1

n−1∑
i=1

i

2i
= 1 +

2n−2 − 1

2n−2
− n− 1

2n−1
= 2− 1

2n−2
− n− 1

2n−1

Thus,

n−1∑
j=0

∞∑
i=1

fn(i)

2i

2j
= 2

( ∞∑
i=1

fn(i)

2i
− 2n − 1

2n

)
+ 2− 1

2n−2
− n− 1

2n−1

But we also know that

n−1∑
j=0

∞∑
i=1

fn(i)

2i

2j
=

2n − 1

2n−1

∞∑
i=1

fn(i)

2i
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So

2n − 1

2n−1

∞∑
i=1

fn(i)

2i
= 2

( ∞∑
i=1

fn(i)

2i
− 2n − 1

2n

)
+ 2− 1

2n−2
− n− 1

2n−1

− 1

2n−1

∞∑
i=1

fn(i)

2i
= −2n − 1

2n−1
+ 2− 1

2n−2
− n− 1

2n−1

1

2n−1

∞∑
i=1

fn(i)

2i
=

2n + 1

2n−1
− 2 +

n− 1

2n−1

1

2n−1

∞∑
i=1

fn(i)

2i
=

1

2n−1
+
n− 1

2n−1

1

2n−1

∞∑
i=1

fn(i)

2i
=

n

2n−1

∞∑
i=1

fn(i)

2i
= n

Problem 16B. Proposed by Nicolas Sullivan

Let ∆ABC be an equilateral triangle with side length 1. Choose points M ,
N and P on BC, CA and AB respectively. Find the smallest possible ratio
between the area of ∆MNP and ∆ABC if

64

[
1

BM3
+

1

CN3
+

1

AP 3

]
+

[
1

CM3
+

1

AN3
+

1

BP 3

]
= 729.

Solution:
Firstly, let S1 be the area of the equilateral triangle, and let S2 be the area of
∆MNP . Also, let a = BM , b = CN and c = AP . Since AB = BC = CA = 1,
then S1 = 1

2 sin (π/3). Additionally, we can find S2 by subtracting the areas of
the corner triangles:

S2 =
1

2
sin (π/3)(1− a(1− c)− b(1− a)− c(1− b))

= S1(1− (a+ b+ c) + (bc+ ca+ ab))

S2

S1
= (1− a)(1− b)(1− c) + abc.

Next, we can express the constraint from the problem statement as

64

[
1

a3
+

1

b3
+

1

c3

]
+

[
1

(1− a)3
+

1

(1− b)3
+

1

(1− c)3

]
= 729.
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By the AM-HM inequality, we know that for positive m, n:

64m+ n

9
≥ 9

8( 1
8m ) + 1

n

64m+ n ≥ 81
1
m + 1

n

1

m
+

1

n
≥ 81

64m+ n
.

Thus, we can say that

1
1
a3 + 1

b3 + 1
c3

+
1

1
(1−a)3 + 1

(1−b)3 + 1
(1−c)3

≥ 81

729
=

1

9
.

Finally, using the HM-GM inequality, we know that

3
1
a3 + 1

b3 + 1
c3

≤ (a3b3c3)1/3 = abc,

and

3
1

(1−a)3 + 1
(1−b)3 + 1

(1−c)3
≤ ((1− a)3(1− b)3(1− c)3)1/3 = (1− a)(1− b)(1− c).

Thus, the ratio between areas must satisfy

S2

S1
≥ 3

1
a3 + 1

b3 + 1
c3

+
3

1
(1−a)3 + 1

(1−b)3 + 1
(1−c)3

≥ 3

9
=

1

3
.

We can easily verify that a = b = c = 2
3 satisfies both the original constraint

and S2

S1
= 1

3 , so this the minimum possible ratio is areas is

S2

S1
=

1

3
.

Problem 17B. Proposed by Nikola Milijevic

Recall that the Fibonacci sequence is defined by f1 = 1, f2 = 1 and fk =
fk−1 + fk−2 for k ≥ 3. Prove that fn+4 ≡ 2fn (mod 3) for all n ∈ N
Solution:
We solve this problem with strong induction on n, where P (n) is the statement
fn+4 ≡ 2fn (mod 3)

Base Case: Consider two base cases, when n = 1 and n = 2
We have f1 = 1, f5 = 5 and 5 ≡ 2(mod 3) so f5 ≡ 2f1(mod 3). Similarily,
f2 = 1, f6 = 8 and 8 ≡ 2(mod 3) so f6 ≡ 2f2(mod 3). Therefore the base cases
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hold.

Inductive Step: Let k be an arbitrary integer greater than 2. Assume the
inductive hypotheses, P (1) ∧ P (2) ∧ · · · ∧ P (k), that is, fi+4 ≡ 2fi (mod 3) for
i ∈ {1, 2, . . . , k}. We wish to prove the inductive conclusion, fk+5 ≡ 2fk+1 (mod
3).

fk+4 ≡ 2fk(mod 3) | by inductive hypothesis

fk+3 ≡ 2fk−1(mod 3) | by inductive hypothesis

fk+4 + fk+3 ≡ 2(fk + fk−1)(mod 3)

fk+5 ≡ 2fk+1(mod 3)

We have proven the inductive conclusion, so therefore the statement P (n) is
true by the principle of strong induction.

Problem 18B. Proposed by Andy Kim

There is an event in Ottawa, which has attendees sitting in a row of n chairs.
However, to comply to the social distancing guidelines, there must be a space
of at least one empty chair between attendees. Given that there is at least 1
attendee, show that the number of possible seating arrangements is Fn+2 − 1.
(note: Fn is the n’th fibonacci number, which is defined by F1 = 1, F2 = 1,
Fn = Fn−1 + Fn−2 for natural n ≥ 3)
Solution:
Let sn be the number of possible seating arrangements for n chairs. Now, we
proceed by induction.

Base case: n = 1, n = 2

For 1 chair, there is only one possible arrangement, so we have

s1 = 1 = 2− 1 = F3 − 1

For 2 chairs, a person can sit in either chair, so we have

s2 = 2 = 3− 1 = F4 − 1

Inductive step:

Suppose we have that sk = Fk+2 − 1 and sk−1 = Fk+1 − 1 for some natural
k ≥ 2. Then, for k + 1 chairs, if the k + 1’th chair is not taken, The number of
possible arrangements is exactly equal to sk−2.

If the k + 1’th chair is taken, either there is at least 1 other chair taken, in
which case we have sk−1 possible arrangements, or it is the only chair taken, in
which case we have 1 arrangement.

Then, adding these up, we have
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sk+1 = sk + sk−1 + 1 = Fk+2 − 1 + Fk+1 − 1 + 1 = Fk+3 − 1

So, the induction is complete, and we have that sn = Fn+2−1 for all natural
n.

Problem 19B. Proposed by Luca Tu

Find the maximum of log a · log c, given:

log a+ logb c = 3 and log b+ loga c = 4

(where log x denotes log10 x)
Solution:

By the change of base formula, logb c = log c
log b = z

y . Similarly, loga c = z
x .

Then
x+

z

y
= 3, y +

z

x
= 4

xy + z = 3y, xy + z = 4x

xy + z = 3y = 4x

Since 3y = 4x, we can assume x = 3t, y = 4t for some real number t.

3t · 4t+ z = 3 · 4t

z = 12t− 12t2 = 12t(1− t)
Multiply z by x, (since xz = log a · log c):

xz = 3t · (12t(1− t))
= 36t2 · (1− t) (Time for tricks)

= 18 · t2 · [2 · (1− t)]
= 18 · [t2 · (2− 2t)]

= 18 · [t · t · (2− 2t)]

≤ 18 ·
[
t+ t+ (2− 2t)

3

]3
(AM-GM inequality)

≤ 18 ·
(

2

3

)3

=
16

3
.

(Note 0 ≤ 1
3 log a = t. If t > 2 then xz < 0. Thus, for our purposes we may

assume 0 ≤ t ≤ 2 which allows us to use AM-GM as shown above)

Now we have the theoretical maximum, but we need to find actual x, y, z
that satisfy this. Since the equality for AM-GM inequality holds when all the
elements are equal, we have t = 2

3 . Then x = 2, y = 8
3 , z = 8

3 . Which indicates

a = 100, b = c = 10
8
3 . Checking back, we see that this does indeed work. So

the final answer is 16
3
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Problem 20B. Proposed by DC

Given six points A1, A2, A3, A4, A5, A6 on a circle such that
_

A1A2 =
_

A2A3,
_

A3A4 =
_

A4A5, and
_

A5A6 =
_

A6A1. Prove that the three points obtained by
intersecting A4A6 with A1A3, A2A4 with A1A5, and A3A5 with A2A6 are
collinear.
Solution: Let M1 be the intersection of A4A6 and A1A3, M2 be the intersec-
tion of A3A5 and A2A6, and M3 be the intersection of A1A5 and A2A4. Let
I be the intersection of A1A4, A2A5, and A3A6, all being angle bisectors in
∆A1A3A5.
By applying Menelaus’ Theorem in ∆IA1A3 with transversal A6A4M1 we ob-
tain:

A6I

A6A3
× M1A3

M1A1
× A4A1

A4I
= 1.

Again, by applying Menelaus’ Theorem in ∆IA1A5 with transversal A2A4M3

we obtain:

M3A1

M3A5
× A2A5

A2I
× A4I

A4A1
= 1.

Finally, by applying Menelaus’ Theorem in ∆IA3A5 with transversal A6A2M2

we obtain:

A6A3

A6I
× A2I

A2A5
× M2A5

M2A3
= 1.

By multiplying all three above relationships, we obtain:

M1A3

M1A1
× M3A1

M3A5
× M2A5

M2A3
= 1.

that is the converse of Menelaus’ Theorem for the sides A1A3, A1A5 and A3A5,
all sides in ∆A1A3A5 intersected by the transversal M1M2M3.
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