
Year 2 - Number 2 - November 2021 Problems

January 31, 2022

Problems

Problem 35A. Proposed by DC

In trapezoid ABCD, the bases are AB=7 cm and CD=3 cm. The circle with
the origin at A and radius AD intersects diagonal AC at M and N. Calculate
the value of the product CM × CN .

Problem 67A. Proposed by Eliza Andreea Radu

Consider the convex quadrilateral ABCD and the parallelograms ACPD and
ABDQ. Find m(](AC,BD)) knowing that BP = 16, CQ = 12, AC = 4, and
BD = 7

√
2.

Problem 76A. Proposed by Vedaant Srivastava

Find all triples (x, y, z) ∈ R3 that satisfy the following system of equations:
x3 = −3x2 − 11y + 26

y3 = 3y − 7z + 23

z3 = −9z2 + 13x− 121

Problem 77A. Proposed by Octavian Tiberiu Bacain

Show that 2x
2x+4 + 3y

3y+9 + 5z
5z+25 ≥ 2 for any x, y, and z integers satisfying

2x + 3y + 5z = 12.

Solution Problem 77A

The statement is not true; one counterexample is enough.

Problem 78A. Proposed by Aurelia Georgescu

Find x, y ∈ Z such that 4x2+10x+7
4y3−12y2+8y−1 ∈ Z.
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Problem 79A. Proposed by Octavian Tiberiu Bacain

Prove that
2

3
√

2
· 2

5
√

6
· 2

7
√

12
· · · 2

201
√

10100
>

1
101!2

101

Solution Problem 79A

We will derive from AM-GM a+b
2 ≥

√
ab:

2

a + b
≤ 1√

ab
⇒ 2

(a + b)
√
ab
≤ 1

ab
.

Observed that all the factors from the initial expression have the following form:
2

(n+n+1)
√

n(n+1)
. Consequently, their product will be less then

1

1× 2
× 1

2× 3
× 1

3× 4
×· · ·× 1

100× 101
=

1

12 × 22 × 32 × · · · × 1002 × 100
=

1
101!2

101

.

Problem 80A. Proposed by Vlad Armeanu

Solve in R the equation:

x +

[
x− 2021

506

]2
+
∣∣x2 − 9x + 20

∣∣ = 2
(√

x− 3 + 1
)

Solution Problem 80A

From the conditions regarding the existence of the equation:

x− 3 ≥ 0⇒ x ∈ [3,∞)

Observe that:

x− 2
(√

x− 3 + 1
)

+

[
x− 2021

506

]2
+
∣∣x2 − 9x + 20

∣∣ = 0

Observe that:(√
x− 3− 1

)2
= x− 3− 2

√
x− 3 + 1 = x− 2− 2

√
x− 3 = x− 2

(
1 +
√
x− 3

)
The equation is now:

(√
x− 3− 1

)2
+

[
x− 2021

506

]2
+
∣∣x2 − 9x + 20

∣∣ = 0

(√
x− 3− 1

)2 ≥ 0[
x− 2021

506

]2 ≥ 0∣∣x2 − 9x + 20
∣∣ ≥ 0

The sum of three positive number is equal to zero if each number is equal to zero.

⇒
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⇒
(√

x− 3− 1
)2

=

[
x− 2021

506

]2
=
∣∣x2 − 9x + 20

∣∣ = 0⇒

⇒
√
x− 3− 1 = 0⇒

√
x− 3 = 1⇒ x− 3 = 1⇒ x = 4

Verify for x = 4:[
4− 2021

506

]2
= 0⇒

[
4 ∗ 506

506
− 2021

506

]2
= 0⇒

[
2024

506
− 2021

506

]2
⇒
[

3

506

]2
= 0

Problem 81A. Proposed by Octavian Tiberiu Bacain

Find x and y integers such that[
y2(x2 + 1)

x2 + y2 + 1
+

x(y2 + 1)

x2 + y2 + 1
+

x4 + y4 + 2

x2 + y2 + 1

]
= (x + y)2 − 2xy + 2

Solution Problem 81A

Observe that[
y2(x2 + 1)

x2 + y2 + 1
+

x(y2 + 1)

x2 + y2 + 1
+

x4 + y4 + 2

x2 + y2 + 1

]
=

[
x2 + y2 + 1)2

x2 + y2 + 1
+

1

x2 + y2 + 1

]
=

=

[
x2 + y2 + 1 +

1

x2 + y2 + 1

]
= x2 + y2 + 1 +

[
1

x2 + y2 + 1

]
.

Consequently,

x2 + y2 + 1 +

[
1

x2 + y2 + 1

]
= (x + y)2 − 2xy + 2

and

x2 + y2 + 1 +

[
1

x2 + y2 + 1

]
= x2 + 2xy + y2 − 2xy + 2

x2 + y2 + 1 +

[
1

x2 + y2 + 1

]
= x2 + y2 + 1 + 1[

1

x2 + y2 + 1

]
= 1

But [
1

x2 + y2 + 1

]
≤ 1.

Then we have only the equality: 1
x2+y2+1 = 1 with x2+y2+1 = 1 and x2+y2 = 0

with solutions x = 0 and y = 0.

Problem 82A. Proposed by Matei Neascu

If a, b, c > 0 and a + b + c = 4, find the minimum value of the sum S =
a + b + 3

c + 5
+

b + c + 3

a + 5
+

c + a + 3

b + 5
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Solution Problem 82A

Considering the condition a+ b+ c = 4, rewrite the numerators of the fractions

S =
4− c + 3

c + 5
+

4− a + 3

a + 5
+

4− b + 3

b + 5
=

12− (c + 5)

c + 5
+

12− (a + 5)

a + 5
+

12− (b + 5)

b + 5

S = 12

(
1

c + 5
+

1

a + 5
+

1

b + 5

)
− 3 (1)

Applying Titus’ Lemma:

1

c + 5
+

1

a + 5
+

1

b + 5
≥ (1 + 1 + 1)2

a + b + c︸ ︷︷ ︸
4

+15
=

9

19

So, (1) becomes:

S ≥ 12 · 9

19
− 3 =

108− 57

19
=

51

19
with equality for a = b = c =

4

3

Conclusion: min(S) =
51

19
is reached for a = b = c =

4

3
.

Problem 83A. Proposed by Gabriel Crisan

Given the points A(1, 4), B(1, 0), C(3, 2), and M(
√
10+2
2 ,

√
6+4
2 ), prove that the

projections of M on sides AB, BC, and AC are collinear.

Solution Problem 83A

We are trying to find the coordinates of the center of the circumscribed circle
of ∆ABC. The equations of the sides AB, BC and AC are:

AB :
x− 1

1− 1
=

y − 4

0− 4
⇒ −4x + 4 = 0

AC :
x− 1

3− 1
=

y − 4

2− 4
⇒ −x− y + 5 = 0

BC :
x− 1

3− 1
=

y − 0

2− 0
⇒ x− y − 1 = 0

and the slopes of the sides AC and BC are mAC = 1 and mBC = −1.
Let N and P be the midpoints of sides AC and BC. We have xN = 1+3

2 = 2
and yN = 4+2

2 = 3. Consequently, N(2, 3). Similarly, we find P (2, 1).
We can calculate the equations of the parallel bisectors of the sides AC and BC:
The parallel bisector of the side AC: y − 3 = 1(x− 2) ⇒ −x + y − 1 = 0
The parallel bisector of the side BC: y − 1 = −1(x− 2) ⇒ x + y − 3 = 0
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We want now to find the center O of the circumscribed circle of ∆ABC. Solv-
ing the system formed with the last two equations (O is the intersection of the
parallel bisectors described above), we found x = 1 and y = 2. Consequently,
O(1, 2).
Let denote r the radius of the circumscribed circle of ∆ABC and r = OA =√

(1− 1)+(4− 2)2 = 2.
Then we can demonstrate that A, B, C and M are concyclic points:

OM =

√
(

√
10 + 2

2
− 1)2 + (

√
6 + 4

2
− 2)2 =

√
10

4
+

6

4
= 2 = r = OA.

Consequently, the points are concyclic and, using the Simson’s Theorem, we
demonstrate the conclusion.

Problem 84A. Proposed by Vlad Armeanu

Solve in R the equation:√
z − y2 − 6x− 26 + x2 + 6y + z − 8 = 0

Solution Problem 84A

From the existence condition:

z − y2 − 6x− 26 ≥ 0 (1)

From √
z − y2 − 6x− 26 ≥ 0 =⇒ x2 + 6y + z − 8 < 0 (2)

we obtain:
−z + y2 + 6x + 26 ≤ 0 (3)

By adding the relationships (2) and (3)

x2 + 6y + z − 8− z + y2 + 6x + 26 ≤ 0

x2 + 6x + y2 + 6y + 18 ≤ 0

x2 + 6x + 9 + y2 + 6y + 9 ≤ 0

(x + 3)
2

+ (y + 3)
2 ≤ 0

(x + 3)
2

= 0

(y + 3)
2

= 0

⇒
{

x + 3 = 0
y + 3 = 0

⇒ x = y = −3

By substituting x and y in the initial equation:√
z − (−3)

2 − 6 ∗ (−3)− 26 + (−3)2 + 6 ∗ (−3) + z − 8 = 0⇒
√
z − 9 + 18− 26 + 9− 18 + z = 0⇒

√
z − 17 + z − 17 = 0
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Hovever
z − 17 ≥ 0

Because
z − 17 ≤ 0

we can conclude z = 17.

Problem 85A. Proposed by Ilinca Maria Popa

Solve in R the equation:√
x1 · (2− x1)+

√
x2 · (4− x2)+

√
x3 · (8− x3)+· · ·+

√
x2021 · (22021 − x2021) = 22021−1

Solution Problem 85A

By applying AM-GM to the numbers x1 and 2− x1 we obtain:√
x1 · (2− x1) ≤ x1 + (2− x1)

2
=

2

2
= 1

Similarly, √
x2 · (4− x2) ≤ x2 + (4− x2)

2
=

4

2
= 2

√
x3 · (8− x3) ≤ x3 + (8− x3)

2
=

8

2
= 22

· · ·√
x2021 · (22021 − x2021) ≤ x2021 + (22021 − x2021)

2
=

22021

2
= 22020

By summing the above relationships, we obtain:√
x1 · (2− x1)+

√
x2 · (4− x2)+

√
x3 · (8− x3)+· · ·+

√
x2021 · (22021 − x2021) ≤ 1+2+22+· · ·+22020 =

= 22021 − 1.

However, from the statement of the problem:√
x1 · (2− x1)+

√
x2 · (4− x2)+

√
x3 · (8− x3)+· · ·+

√
x2021 · (22021 − x2021) = 22021−1.

Consequently, x1 = 2−x1 and x1 = 1, x2 = 4−x2 and x2 = 2, x3 = 8−x3 and
x3 = 22, · · · , x2021 = 22021 − x2021 and x2021 = 22020.
To conclude, the only numbers that address the requirements of the problem
are x1 = 1;x2 = 2;x3 = 22; · · · ;x2021 = 22020.

Problem 86A. Proposed by Maria Radu

Find how many values n ∈ R \ Q satisfy the condition that both 4n2 − 6n − 2
and 4n3 − 2n2 − 1 are simultaneously rational numbers.
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Problem 87A. Proposed by Vlad Armeanu

Solve in R the equation: [
3x + 11

15

]
+

[
3x + 16

15

]
= 5

Solution Problem 87A

Observe that [
3x + 11

15

]
=

[
x + 2

5
+

1

3

]
and [

3x + 16

15

]
=

[
x + 2

5
+

2

3

]
Denote

x + 2

5
= t⇒

[
t +

1

3

]
+

[
t +

2

3

]
= 5

Add [t] and apply Hermite’s identity

[t] +

[
t +

1

3

]
+

[
t +

2

3

]
= 5 + [t]

[3t] = 5 + [t]

t− 1 < [t] ≤ t⇒

3t− 1 < [3t] ≤ 3t
t + 4 < [t] + 5 ≤ t + 5

}
⇒

t + 4 < 3t

3t− 1 < t + 5

Solve the system of inequations:

t + 4 < 3t⇒ 4 < 2t⇒ 2 < t (1)

3t− 1 < t + 5⇒ 2t < 6⇒ t < 3 (2)

From (1) and (2) obtain
2 < t < 3

due to
t ∈ (2, 3)⇒ [t] = 2⇒ [3t] = 5 + [t] = 7⇒

7 ≤ 3t < 8⇒ 7

3
≤ t <

8

3
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By intersecting both intervals :

7

3
≤ t <

8

3

2 < t < 3

⇒ 7

3
≤ t <

2

3

7

3
≤ x + 2

5
<

8

3
| · 5

35

3
≤ x + 2 <

40

3
| · 3

35 ≤ 3x + 6 < 40⇒ 29 ≤ 3x < 34⇒ 29

3
≤ x <

34

3

Problem 39B. Proposed by Alexander Monteith-Pistor

For n ∈ N, let S(n) and P (n) denote the sum and product of the digits of n
(respectively). For how many k ∈ N do there exist positive integers n1, ..., nk

satisfying
k∑

i=1

ni = 2021

k∑
i=1

S(ni) =

k∑
i=1

P (ni)

Problem 40B. Proposed by Vedaant Srivastava

Two identical rows of numbers are written on a chalkboard, each comprised of
the natural numbers from 1 to 10! inclusive. Determine the number of ways to
pick one number from each row such that the product of the two numbers is
divisible by 10!

Problem 56B. Proposed by Alexander Monteith-Pistor

A game is played with white and black pieces and a chessboard (8 by 8). There
is an unlimited number of identical black pieces and identical white pieces. To
obtain a starting position, any number of black pieces are placed on one half
of the board and any number of white pieces are placed on the other half (at
most one piece per square). A piece is called matched if its color is the same of
the square it is on. If a piece is not matched then it is mismatched. How many
starting positions satisfy the following condition

# of matched pieces − # of mismatched pieces = 16

(your answer should be a binomial coefficient)
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Problem 62B. Proposed by Eliza Andreea Radu

If a1, a2, . . . , a2021 ∈ R+ such that
∑2021

i=1 ai > 2021, prove that

a2
2021

1 · 1 · 2 + a2
2021

2 · 2 · 3 + . . . + a2
2021

2021 · 2021 · 2022 > 4086462.

Solution Problem 62B

By using TITU’s inequality, we obtain the following relationship:

E = a2
2021

1 · 1 · 2 + a2
2021

2 · 2 · 3 + · · · a2
2021

2021 · 2021 · 2022 =

=
a2

2021

1
1
1·2

+
a2

2021

2
1
2·3

+ · · ·+ a2
2021

2021
1

2021·2022
≥ a2

2020

1 + a2
2020

2 + · · ·+ a2
2020

1
1
1·2 + 1

2·3 + · · ·+ 1
2021·2022

=

=
a2

2020

1 + a2
2020

2 + · · ·+ a2
2020

1
1
1 −

1
2 + 1

2 −
1
3 + · · ·+ 1

2021 −
1

2022

=

(∑2021
i=1 a2

2020

1

)2
1
1 −

1
2022

=

(∑2021
i=1 a2

2020

1

)2
2021
2022

Next, we will prove that

2021∑
i=1

a2
k

i ≥

(∑2021
i=1 a2

k−1

1

)2
2021

, k ∈ N, k ≥ 1

by using the CBS inequality:

(a2
k

1 +a2
k

2 +· · ·+a2
k

2021)(1+1+· · ·+1) ≥ (a2
k−1

1 +a2
k−1

2 +· · ·+a2
k−1

2021 )2 ⇒
2021∑
i=1

a2
k

i ≥

(∑2021
i=1 a2

k−1

1

)2
2021

Now that we have demonstrated the above inequality, we obtain :

2020∑
i=1

a2
k

i ≥

(∑2021
i=1 a2

2019

1

)2
2021

≥

((∑2021
i=1 a22018

i

)2

2021

)2

2021
≥

(∑2021
i=1 a2

2018

1

)22
20211+2

≥ · · · ≥

≥

(∑2021
i=1 a2

1

1

)22019
20211+2+···+22018

≥

(
(
∑2021

i=1 a1)
2

2021

)22019

20211+2+···+22018
=

(∑2021
i=1 ai

)22020
20211+2+···+22018

≥

≥ 20212
2020

202122020−1
= 2021⇒

(
2021∑
i=1

a2
2020

i

)
≥ 20212

E ≥

(∑2021
i=1 a2

2020

i

)2
2021
2022

>
20212

2021
2022

= 20212 · 2022

2021
= 2021 · 2022.

Therefore, E > 2021 · 2022 = 4086462.
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Problem 67B. Proposed by Stefan-Ionel Dumitrescu

Consider a cube ABCDA′B′C ′D′. Point X lies on face ADD′A′. Point Y lies
on face ABB′A′. Point W is a randomly chosen point on the edges, faces, or
interior of the cube. If Z is the midpoint of XY , find the probability that W is
the midpoint of an AZ.

Problem 70B. Proposed by Daisy Sheng

Triangle ABC is obtuse where ]C > 90◦. Show that

4r2 ≤ a2b2c2

(a + b + c)2(c2 − a2 − b2)
,

where r is the inradius of 4ABC and a, b, c represent the length of the sides
opposite to ]A,]B,]C, respectively.

Solution Problem 70B

Multiplying both sides by (a + b + c)2 > 0, we get

4r2(a + b + c)2 ≤ (abc)2

c2 − a2 − b2
.

Rewriting (a+ b+ c)2 as 4 ·
(
a+b+c

2

)2
= 4s2, where s denotes the semiperimeter,

the inequality becomes

4r2 · 4s2 ≤ (abc)2

c2 − a2 − b2
⇒ 16(rs)2 ≤ (abc)2

c2 − a2 − b2
.

Letting the area of the triangle be S, we know that S = rs. So, we have that

16S2 ≤ (abc)2

c2 − a2 − b2
⇒ 1 ≤

(
abc

4S

)2

· 1

c2 − a2 − b2
⇒ 1 ≤ R2

c2 − a2 − b2
.

Law of Cosines yields c2 = a2 + b2 − 2ab cosC. Thus, the inequality becomes

1 ≤ R2

−2ab cosC
.

By Extended Law of Sines, we have

1 ≤
(

a
2 sinA

)
·
(

b
2 sinB

)
−2ab cosC

⇒ 1 ≤ − 1

8 sinA sinB cosC
.

Since ]C = 180◦ − ]A − ]B, we know that cosC = − cos(A + B). Thus, the
inequality becomes

1 ≤ 1

8 sinA sinB cos(A + B)
.
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The product to sum identity yields

1 ≤ 1

4[cos(A−B) cos(A + B)− cos2(A + B)]
.

Since cos(A− B) ≤ 1, where equality occurs when ]A = ]B, we see based on
comparing the denominators that

1

4[cos(A−B) cos(A + B)− cos2(A + B)]
≥ 1

4[cos(A + B)− cos2(A + B)]
.

We know that

1

4[cos(A + B)− cos2(A + B)]
=

1

4 cos(A + B)(1− cos(A + B))
.

Since ]A + ]B < 90◦ ⇒ cos(A + B), 1− cos(A + B) > 0. Via AM-GM, we get
that

cos(A + B) + (1− cos(A + B))

2
≥
√

cos(A + B) · (1− cos(A + B))

⇓
1

4
≥ cos(A + B)(1− cos(A + B))

⇓
1

4 cos(A + B)(1− cos(A + B))
≥ 1,

where equality occurs when 2 cos(A + B) = 1 ⇒ A + B = 60◦. We thus know
that

1

4[cos(A−B) cos(A + B)− cos2(A + B)]
≥ 1,

meaning that the original inequality is true. We find the equality case by solving
the system

A = B

A + B = 60◦

A + B + C = 180◦,

which yields A = 30◦, B = 30◦, and C = 120◦.

Problem 76B. Proposed by Alexander Monteith-Pistor

Let ABCD be a quadrilateral with ]ABC = 90◦. Points E and F are on AD
and BC respectively such that AB is parallel to EF . Further, AC,BD and EF
intersect at O. Given that BF = 4, AB = 9, AE = 5 and CD = 20, find a
polynomial p(x) such that one of its roots is at x = DO

OB .
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Problem 77B. Proposed by Andy Kim

(i) Evaluate (
n

0

)
− 2

(
n

1

)
+ · · · ± 2n

(
n

n

)
=

n∑
i=0

(−1)i2i
(
n

i

)
for n ∈ Z+.
(ii) Prove that

n∑
i=0

(−1)n−iin
(
n

i

)
= n!

for all n ∈ Z+.

Problem 78B. Proposed by Ciurea Pavel

Given the positive real numbers x, y, and z, prove that

2(
∑
cyc

x)

√∑
cyc

√
x2 + y2 + z2 ≥

≥
∑
cyc

√
3(x + y)(x + z)(

√
x2 + y2 + xy +

√
x2 + z2 + xz −

√
y2 + z2 + yz).

Problem 79B. Proposed by Alexandru Benescu

Prove that 3S has at least 16 natural divisors, where

S =
[√

1 · 2 · 3 · 4
]

+
[√

2 · 3 · 4 · 5
]

+ · · ·+
[√

n · (n + 1) · (n + 2) · (n + 3)
]

and n > 15, with n ∈ N.

Solution Problem 79B

We will prove that[√
n · (n + 1) · (n + 2) · (n + 3)

]
= n · (n + 3)

n · (n + 1) · (n + 2) · (n + 3) = (n2 + 3n)(n2 + 3n + 2) = (n2 + 3n + 1)2 − 1

But, (n2 + 3n)2 < (n2 + 3n + 1)2 − 1 < (n2 + 3n + 1)2, for each n > 0. Thus,[√
n · (n + 1) · (n + 2) · (n + 3)

]
= n2 + 3n.

Consequently, S = 1 · 4 + 2 · 5 + · · ·+ n · (n + 3) and

S = 12+22+· · ·+n2+3·(1+2+· · ·+n) =
n(n + 1)(2n + 1)

6
+

3n(n + 1)

2
=

n(n + 1)(2n + 10)

6
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S =
n(n + 1)(n + 5)

3
and 3S = n(n + 1)(n + 5).

Obviously, n and n + 1 cannot be prime simultaneously (n > 15). Thus, at
least one of n and n + 1 is
(i) equal with d1 · d2 where d1 is prime and d2 is natural, greater than 1 and
not equal with d1 or is
(ii) equal with d2 where d is prime, greater than 2.

In the first case, let X = d1 · d2. Consequently, X has at least 4 divisors
(1, d1, d2, d1 · d2) and n(n + 1) has at least 8 divisors (we used the fact that
gcd(n, n + 1) = 1 and the Lemma:

If N = ab11 · a
b2
2 · · · a

bp
p with a1, a2, · · · , ap are distinct prime numbers then N

has (b1 + 1)(b2 + 1) · · · (bp + 1) natural divisors.

Now, we will prove that gcd(n(n + 1), n + 5) = 1, when n > 5.
Let z be the gcd(n(n + 1), n + 5) then z|n2 + n and z|n + 5 . Also z|n2 + 5n.
So, z|4n. But, from z|n + 5⇒ z|4n + 20⇒ z|20.

We want to prove that z cannot be equal with n+5, which would mean that
there is a prime factor which divides n + 5 and which does not divide n(n + 1).
But, z ≤ 20 and n + 5 > 20 ⇒ z 6= n + 5. Thus, using again the lemma
mentioned before, we can conclude that n(n + 1)(n + 5) has at least 8 · 2 = 16
divisors.
In the second case, let X = d2 , d prime and greater than 2 then d2 is odd and
X is odd.

If X = n, let Y be n + 1. If X = n + 1, let Y be n. Thus, Y is even and
obviously greater than 2. Consequently, similarly to the first case, n(n+ 1) has
at least 8 divisors.
Now, we can prove in the same way as for the first case that n(n + 1)(n + 5)
has at least 8 · 2 = 16 divisors.
Finally, following these demonstrations, we can conclude that 3S has at least
16 natural divisors.

Problem 80B. Proposed by Pavel Ciurea

Given the positive real numbers x, y, z and t, prove that:

2xy

yt
+

2yt

xz
+
y

z
+
z

y
+2

√
(
x

y
+

y

x
)(
z

t
+

t

z
)(
y

z
+

z

y
− 1)(

x

t
+

t

x
+ 1) ≥ x

t
+

t

x
+
√

3(
x

z
+
z

x
+
y

t
+
t

y
)+4.

Problem 81B. Proposed by Alexandru Benescu

Let ABC be a triangle, H its orthocenter and X,Y, Z the circumscribed circles
of ∆BHC, ∆AHC, and ∆AHB respectively. Let DE be the common tangent
to X and Y , EF to Y and Z, and FD to X and Z, such that all three circles
X,Y, Z are inside ∆DEF . Prove that AD, BE and CF are concurrent.
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Problem 82B. Proposed by Alexandru Benescu

Prove that:

(a+ b+ c+ 2)2 +
5

2
(a+ b)(b+ c)(c+ a) + 2(a3 + 2)(b3 + 2)(c3 + 2) + 1 ≥ 100abc

where a, b, c ∈ R+ and a2 + b2 + c2 = 3.

Problem 83B. Proposed by Vlad Armeanu

Solve in R the following equation:

10

x− 10
+

11

x− 11
+ +

12

x− 12
+

13

x− 13
= 2x2 − 23x− 4.

Solution Problem 83B

By adding the terms:

10

x− 10
+ 1 +

11

x− 11
+ 1 +

12

x− 12
+ 1 +

13

x− 13
+ 1 = 2x2 − 23x

10 + x− 10

x− 10
+

11 + x− 11

x− 11
+ 1 +

12 + x− 12

x− 12
+ 1 +

13 + x− 13

x− 13
+ 1 = 2x2− 23x

x

x− 10
+

x

x− 11
+

x

x− 12
+

x

x− 13
= 2x2 − 23x

x

(
1

x− 10
+

1

x− 11
+

1

x− 12
+

1

x− 13

)
= x(2x− 23)

One solution is x = 0.

1

x− 10
+

1

x− 11
+

1

x− 12
+

1

x− 13
= 2x− 23

By grouping the terms:(
1

x− 10
+

1

x− 13

)
+

(
1

x− 11
+

1

x− 12

)
= 2x− 23

x− 13

(x− 10)(x− 13)
+

x− 10

(x− 13)(x− 10)
+

x− 12

(x− 11)(x− 12)
+

x− 11

(x− 11)(x− 11)
= 2x−23

x− 13 + x− 10

(x− 10)(x− 13)
+

x− 12 + x− 11

(x− 11)(x− 12)
= 2x− 23

2x− 23

(x− 10)(x− 13)
+

2x− 23

(x− 11)(x− 12)
= 2x− 23

(2x− 23)

(
1

(x− 10)(x− 13)
+

1

(x− 11)(x− 12)

)
= 2x− 23 | : (2x− 23)
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One solution is

x =
23

2
.

1

(x− 10)(x− 13)
+

1

(x− 11)(x− 12)
= 1

1

x2 − 13x− 10x + 130
+

1

x2 − 23x + 121
= 1

Denote
x2 − 23x + 121 = t

1

t + 9
+

1

t
= 1

and
t + t + 9

t(t + 9)
= 1⇒ 2t + 9

t(t + 9)
= 1⇒

2t + 9 = t2 + 9t =⇒ t2 + 7t− 7 = 0

Solve the second order equation is a = 1, b = 7, c = −7

∆ = b2 − 4ac⇒ ∆ = 72 − 4(−7)

⇒ ∆ = 49 + 28⇒ ∆ = 77

x1,2 =
−7±

√
77

2
⇒

x1 =

√
77− 7

2

şi

x2 =

√
77 + 7

2

Problem 84B. Proposed by Nicholas Sullivan

Let C be a circle of radius r centred at the origin. Consider n ≥ 2 points on C,
{Pk : 1 ≤ k ≤ n}, such that their centroid is at the origin. Show that for any
point Q on C, the average of the squared lengths {QPk} is equal to 2r2. That
is:

1

n

n∑
k=1

(QPk)2 = 2r2.
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Solution Problem 84B

We start by expressing this problem using the complex plane. If each point is
expressed as a complex number, then we would like to show that

1

n

n∑
k=1

|q − pk|2 = 2r2,

if |q| = r and |pk| = r, with the center of mass condition requiring:

n∑
k=1

pk = 0.

Expanding the first expression, we have:

1

n

n∑
k=1

|q − pk|2 =
1

n

n∑
k=1

[|q|2 + |pk|2 − qp∗k − q∗pk]

=
1

n

n∑
k=1

[r2 + r2 − qp∗k − q∗pk].

Next, separating the summation, we have:

1

n

n∑
k=1

|q − pk|2 = 2r2 − q

n

n∑
k=1

p∗k −
q∗

n

n∑
k=1

pk.

Since
∑n

k=1 pk = 0 and thus
∑n

k=1 p
∗
k = 0, then:

1

n

n∑
k=1

|q − pk|2 = 2r2 − 0 = 2r2.

This completes the proof.

Problem 85B. Proposed by Daisy Sheng

We have two sequences of numbers. The first sequence is defined by a1 =
4, a2 = 12, and an+2 = 2an+1 − an + 4, where n ∈ Z+. The second sequence is
defined by bn = 4n3 +d1 ·n2 +d2 ·n+d3, where n ∈ Z+ and d1, d2, d3 represent
the coefficients of the polynomial. The polynomial for bn has roots r1, r2, r3
that satisfy r1r2 + r1r3 = 1

2 , r1r2r3 = − 1
4 , and r2 − r3 = i. Prove that an and

bn are relatively prime for all n ∈ Z+.

Solution Problem 85B

We first find a formula for an that is only dependent on the value of n. We are
given that

an+2 = 2an+1 − an + 4⇒ (an+2 − an+1)− (an+1 − an) = 4.
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Since the above indicates that the second finite difference is constant, we see
that an is defined by a quadratic. We use the fact that

constant finite difference = leading coefficient · (degree of polynomial)!

to help us find the leading coefficient of the quadratic for an. Since 4
2! = 2, we

get that
an = 2n2 + c1n + c2,

where c1 and c2 represent the coefficient and constant term, respectively, for the
quadratic. Plugging in a1 = 4 and a2 = 12, we have that

a1 = 2 + c1 + c2 = 4,

a2 = 8 + 2c1 + c2 = 12.

Solving this system yields c1 = 2 and c2 = 0. Thus, an = 2n2 + 2n.

We now look for the values of d1, d2, d3 in bn = 4n3 + d1 · n2 + d2 · n + d3. We
are given that

r1r2 + r1r3 =
1

2
, (1)

r2 − r3 = i, (2)

r1r2r3 = −1

4
. (3)

Rearranging (1) gives us r2 + r3 = 1
2r1

. Combining this result with (2) using
elimination gives us

r2 =
1

4r1
+

i

2
,

r3 =
1

4r1
− i

2
.

Substituting this into (3), we get

r1

(
1

4r1
+

i

2

)(
1

4r1
− i

2

)
= −1

4
.

Applying difference of squares, we get

r1

(
1

16r21
+

1

4

)
= −1

4
.

Multiplying both sides by 16r1 and rearranging gives us

4r21 + 4r1 + 1 = 0⇒ (2r1 + 1)2 = 0⇒ r1 = −1

2
.

Thus, r2 = − 1
2 + i

2 and r3 = − 1
2 −

i
2 .
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We now use Vieta’s and elementary symmetric polynomials to find d1, d2, d3.
We get that:

d1
4

= −(r1 + r2 + r3)

= −
(
−1

2
+

(
−1

2
+

i

2

)
+

(
−1

2
− i

2

))
=

3

2
⇒ d1 = 6

d2
4

= (r1r2 + r1r3) + r2r3

=
1

2
+

(
−1

2
+

i

2

)
·
(
−1

2
− i

2

)
= 1⇒ d2 = 4

d3
4

= −(r1r2r3)

=
1

4
⇒ d3 = 1.

Therefore, bn = 4n3 + 6n2 + 4n + 1.

In order to show that an and bn are relatively prime, we need to prove that
gcd(an, bn) = gcd(2n2 + 2n, 4n3 + 6n2 + 4n + 1) = 1 for all n ∈ Z+.

We see that 2n2 + 2n is a multiple of 2 whereas 4n3 + 6n2 + 4n + 1 = 2(2n3 +
3n2 + 2n) + 1 is not. Thus,

gcd(2n2 + 2n, 4n3 + 6n2 + 4n + 1) = gcd(n2 + n, 4n3 + 6n2 + 4n + 1).

Applying Extended Euclidean Algorithm gives us:

gcd(n2 + n, 4n3 + 6n2 + 4n + 1) = gcd(n2 + n, 4n3 + 6n2 + 4n + 1− 4n(n2 + n))

= gcd(n2 + n, 2n2 + 4n + 1)

= gcd(n2 + n, 2n2 + 4n + 1− 2(n2 + n))

= gcd(n2 + n, 2n + 1).

Since 2n + 1 is not a multiple of n, we see that gcd(n2 + n, 2n + 1) = gcd(n +
1, 2n + 1). Applying Euclidean Algorithm, we get that

gcd(n + 1, 2n + 1) = gcd(n + 1, n) = gcd(1, n) = 1.

Since gcd(an, bn) = 1 for any n ∈ Z+, we have shown that they are relatively
prime.
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Problem 86B. Proposed by Nicholas Sullivan

Suppose there are 2021 people sitting at a very large circular table. How many
ways are there to give each person a red, blue or green hat such that no two
neighbouring people have the same colour hat?

Problem 87B. Proposed by Max Jiang

There is a row of n pies, numbered 1 to n from left to right. You start at pie 1
and go rightward. At each pie, there is a 1/2 chance that you eat the pie, after
which you move on to the next uneaten pie (which depends on the direction you
are moving). Upon reaching the last uneaten pie, you change the direction you
are going (if the last pie still uneaten you will “repeat” it). You continue until
all pies are eaten. What is the probability that pie 1 is the last pie you eat?
Express your answer as a finite sum in terms of n.

Problem 88B. Proposed by Daisy Sheng

Pierre is coloring a n × n square grid, where n is even and n ≥ 8. He chooses
to omit the centre 2 × 2 square grid (see diagram for an example). In the
spirit of the holidays, Pierre is coloring the dots either red or green. He also
connects horizontally, vertically, and diagonally adjacent dots with lines using
the following color scheme rules:

� 2 red dots are connected by a gold line segment.

� 2 green dots are connected by a blue line segment.

� A red and green dot are connected by a silver line segment.

Let there be: r0 red outside corner dots, r1 red inside corner dots, r2 red
edge dots, and r3 red interior dots. If B is the overall number of blue line
segments and G is the overall number of gold line segments, find G in terms of
B,n, r0, r1, r2, and r3.
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Problem 89B. Proposed by Arnab Sanyal

Let ω1 and ω2 be two intersecting circles. Let ω1 ∩ ω2 = {P,Q}. Let the
tangent to ω1 and ω2 at P meet ω1 and ω2 respectively at B and A. Let the
circumcircle of ∆PBA be ω0. AQ meets ω0 (possibly extended) at Y and BQ
meets ω0 (possibly extended) at X. Assuming P 6= Q, prove or disprove the
following statements:
(i) XABY is an isosceles trapezoid;
(ii) QOBA is cyclic, where O is the circumcenter of ω0.
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