
Number 3 - December 2020 Problems

January 2, 2021

Problem 15A. Proposed by Alexander Monteith-Pistor

Let x0 = 0. For n ≥ 1: if xn−1 is even, xn is randomly chosen from the multiples
of 3 between xn−1−10 and xn−1 +10 (inclusive); if xn−1 is odd, xn is randomly
chosen from the multiples of 4 between xn−1 − 10 and xn−1 + 10 (inclusive).
Find the probability that x5 is even.

Solution

We first make a few observations:

� if xk = i, 0 ≤ k then i is either a multiple of 3 or a multiple of 4

� let 0 ≤ k < n. The probability that xn is even given xk = i is equal to
the probability that xn is even given xk = −i

� let 0 ≤ k < n. Translating xk by 12 has no effect on the problem. Thus,
the probability that xn is even given xk = i is equal to the probability
that xn is even given xk = i+ 12

These properties follow directly from the problem statement. Notably, the prob-
ability xk+1 = i2 given xk = i1 is equal to the probability xk+1 = −i2 given
xk = −i1. Similarly the probability xk+1 = i2 given xk = i1 is equal to the
probability xk+1 = i2 + 6 given xk = i1 + 6.

Let an denote the probability that xn is an even multiple of 3. Let bn de-
note the probability that xn is an odd multiple of 3. Finally, let cn denote the
probability that xn is a multiple of 4 but not a multiple of 3. From the con-
struction of xn’s in the problem statement, a0 = 1 and b0 = c0 = 0. Further,
for n ≥ 1,

an =
3

7
an−1 +

2

5
bn−1 +

4

7
cn−1

bn =
4

7
an−1 +

3

7
cn−1
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cn =
3

5
bn−1

The above relationships hold because of the previous observations. Further,
note that we can use the last relationship to obtain recurrences involving only
the sequences (an) and (bn):

an =
3

7
an−1 +

2

5
bn−1 +

12

35
bn−2

bn =
4

7
an−1 +

9

35
bn−2

Note an+ bn+ 3
5bn−1 = an+ bn+ cn = 1 for all n ≥ 0 (by the first observation).

Using this, we obtain

bn =
4

7

(
1− bn−1 −

3

5
bn−2

)
+

9

35
bn−2 =

4

7
− 4

7
bn−1 −

3

35
bn−2

Note we are now in a position to compute b5 directly:

n 0 1 2 3 4 5
bn 0 4

7
12
72

656
5·73

3984
5·74

146644
52·75

Therefore the probability that x5 is even is

1− b5 = 1− 146644

52 · 75
=

273531

52 · 75
=

273531

420175
≈ 0.651

Note that it is possible to find a closed formula for bn and thus for an, cn and
the probability that xn is even. One could do this using generating functions.

Problem 20A. Proposed by DC

In a cyclic quadrilateral ABCD, P is the intersection of the diagonals and E, M,
G and L are the midpoints on sides AB, BC, CD and DA. By projecting the
medians PE, PM, PG and PL on sides AB, BC, CD and DA, four segments are
obtained: EF, MN, GH and LI. Prove that

AB × FE + CD ×HG = AD × IL+ CB ×MN.

Solution

In the cyclic quadrilateral ABCD, using the power of the point P: AP ×CP =
BP ×DP .
We can derive AP × (AC −AP ) = BP × (BD −BP )
AP ×AC −AP 2 = BP ×BD −BP 2

AP ×AC −BP ×BD = AP 2 −BP 2 (1)
Starting again from AP × CP = BP ×DP .
(AC − CP )× CP = (BD −DP )×DP
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AC × CP − CP 2 = (BD ×DP −DP 2)
AC × CP −BD ×DP = CP 2 −DP 2 (2)
By adding relationship (1) and (2) we obtain:
AC × (AP + CP )−BD × (BP +DP ) = AP 2 −BP 2 + CP 2 −DP 2

AC2 −BD2 = AP 2 −BP 2 + CP 2 −DP 2 (3).
In ∆APB : AP 2 −BP 2 = 2AB × FE
obtained by applying Pythagorean theorem in ∆APF and ∆APF and using
also that E is the midpoint of AB.
In ∆CPD : CP 2 −DP 2 = 2CD ×HG
Consequently, (3) becomes: AC2 − BD2 = 2(AB × FE + CD × HG) (4).
Applying again in ∆BPC and ∆APD (3) becomes: AC2 − BD2 = 2(BC ×
MN +AD × IL) (5).
From (4) and (5):

AB × FE + CD ×HG = AD × IL+ CB ×MN.

Problem 21A. Proposed by Max Jiang

Alice, Bob, Carl, and Daniel like flipping coins. They are playing a game where
they repeatedly flip coins simultaneously until each player has gotten at least 1
heads. What is the expected value of the number of times each player will flip
his or her coin?

Solution

Let uk represent the expected number of flips left if k players have not flipped
heads yet. Note that u0 = 0. Then, we have

u1 = 1 +
1

2
u1 +

1

2
u0 = 1 +

1

2
u1,

since after 1 flip, there is a 1
2 chance the remaining player still has not flipped

heads and a 1
2 chance that we are done. Solving this equation yields u1 = 2.

Next, we have

u2 = 1 +
1

4
u2 +

1

2
u1 +

1

4
u0,

since there is a 1
4 chance neither of the 2 remaining players flip heads, a 1

4 chance
both flip heads, and a 1

2 that one of them does. Substituting u1 = 2 and solving
yields u2 = 8

3 .
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Similarly, we have

u3 = 1 +
1

8
u3 +

3

8
u2 +

3

8
u1

⇒ 7

8
u3 = 1 + 1 +

3

4

⇒ u3 =
22

7
,

u4 = 1 +
1

16
u4 +

1

4
u3 +

3

8
u2 +

1

4
u1

⇒ 15

16
u4 = 1 +

11

14
+ 1 +

1

2

⇒ u4 =
368

105
.

So our final answer is
368

105
.

Problem 22A. Proposed by Nikola Milijevic

For a fixed natural number n, which k would maximize the following expression:(
3n+k
2n

)(
3n−k
2n

)
Solution

This expression equates to

(3n+ k)!(3n− k)!

(2n)!2(n+ k)!(n− k)!

We can further write this as

1

(2n)!2

(
(3n+k)(3n+k−1) · · · (n+k+ 1)

)(
(3n−k)(3n−k+ 1) · · · (n−k+ 1)

)
1

(2n)!2

(
(3n+k)(3n−k)

)(
(3n+ 1 +k)(3n+ 1−k)

)
· · ·
(

(n+ 1 +k)(n+ 1−k)
)

By the AM-GM inequality, this expresion is maximized for k = 0, yielding a

value of
(
3n
2n

)2
Problem 23A. Proposed by Nikola Milijevic

For how many natural numbers n is the expression n! + 3 a perfect cube?
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Solution

With a quick check of the numbers 1− 8, we see only when n = 4 will n! + 3 be
a perfect cube

n 1 2 3 4 5 6 7 8
n! + 3 4 5 9 27 123 723 5043 40323

We now show no such n exist for n > 8. For n > 8, n! is clearly a multiple of
three, so the sum of n! and 3 must also be a multiple of three. For the sum to be
a perfect cube, then n! + 3 must be a multiple of 27. However, n! is a multiple
of 27 for n > 8 but three is not. Therefore the sum cannot be a multiple 27 and
cannot be a perfect square.

Therefore the ony such number is n = 4

Problem 24A. Proposed by Vedaant Srivastava

Let {a1, a2, a3, . . . } be sequence of rational numbers such that a1 = 2 and

an =
3

2

(
an−1

3
+

1

an−1

)
for n ≥ 2. Determine an explicit formula (in terms of n) for an.

Solution

From the recurrence relation, we have that

an =
a2n−1 + 3

2an−1

Therefore we obtain that

an +
√

3

an −
√

3
=

a2n−1+2
√
3an−1+3

2an−1

a2n−1−2
√
3an−1+3

2an−1

=
(an−1 +

√
3)2

(an−1 −
√

3)2

By unfolding this new recurrence relation, we obtain that

an +
√

3

an −
√

3
=

(
a1 +

√
3

a1 −
√

3

)2n−1

= (2 +
√

3)2
n

Rearranging and solving for an, we get that

an =

√
3
(
(2 +

√
3)2

n

+ 1
)

(2 +
√

3)2n − 1
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Remark: An observant student would have noticed that the numerator and
denominator of the successive fractional representations of an satisfy the Pell
equation x2− 3y2 = 1. It is left as an exercise to determine the explicit form of

an by investigating the solution pairs corresponding to θ2
k

, where θ = 2 +
√

3
is the generator of the equation.

Problem 25A. Proposed by Nicholas Sullivan

Consider isosceles triangle ABC (AB = AC, with point D on AB and E on
AC such that AD = DE = EB = BC. Find m(∠ABC).

Solution

Let α = m(∠ABC) = m(∠ACB). Since triangle BCE is also isosceles (BE =
BC), then m(∠BEC) = α, and m(∠CBE) = π − 2α. Thus, m(∠DBE) =
m(∠ABC)−m(∠CBE) = 3α− π. Since triangle EBD is also isosceles (EB =
ED), then m(∠BDE) = 3α − π. Thus, m(∠ADE) = π −m(∠BDE) = 2π −
3α. Since triangle DAE is also an isosceles triangle, then m(∠DAE) = 1

2 (π −
m(∠ADE)) = 3

2α −
π
2 . Finally, since triangle ABC is isosceles, m(∠DAE) =

(π − 2m(∠ABC)) = π − 2α. Thus, π − 2α = 3
2α−

π
2 , so 7α = 3π, and α = 3

7π.

Problem 26A. Proposed by Frederick Pu

Remark: The original submission was modified by AE.
Suppose you lived on an island where every islander x can be described by
an ordered list of 169 real number attributes, (x1, x2, . . . , x169). One of the
islanders, Bob, has attributes B = (1, 2, . . . , 169). We define an intelligence
function, I : R169 7→ R, which takes an islander’s 169 attributes as an input and
outputs their intelligence. Prove that there exists an intelligence function such
that no islander has a higher intelligence than Bob.

Solution

The problem is equivalent to proving the existence of a function I such that
I(x) ≤ I(B) for all possible x = (x1, x2, . . . , x169)|xk ∈ R.

Consider the function

I(x) = −
169∑
k=1

(xk − k)2

Clearly, as (xk − k)2 ≥ 0, the function attains a maximum value when xk = k
for all 1 ≤ k ≤ 169. Thus I(x) ≤ I(B), as desired.
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Problem 27A. Proposed by DC

In any triangle ABC, find the ratio

sinA+ sinB + sinC

cotA+ cotB + cotC

function of the altitudes in the triangle.

Problem 4B. Proposed by Ken Jiang

Alice and Bob are playing a new game. Starting from N , they take turns count-
ing down Fi numbers, where Fi must be a member of the Fibonacci sequence.
Alice goes first, and the player who counts to 1 is the winner. Show that there
are infinite values of N such that, no matter how Alice plays, Bob can win.

Solution

We will prove the claim by contradiction. For a value to be winning for Alice, it
must be either a Fibonacci number (she can count straight to 1), or it must be
a Fibonacci number greater than a losing position. Contrarily, a losing position
is one where counting any permitted value leads to a winning position.

Suppose there are a finite number of values of N where Alice loses. Then,
there must exist a Fibonacci number Fn that is greater than all such values.

However, consider the numbers from Fn+2 + Fn to Fn+3 − 1. Clearly, no Fi-
bonacci number less than or equal to Fn+2 can bring us to a losing position,
since the resulting value would be greater than or equal to Fn, which we as-
sumed was greater than any losing position. Obviously, we are also unable to
count any Fibonacci number greater than or equal to Fn+3, since they are all
greater than any of the values in this range. Thus, there are either losing posi-
tions between Fn and Fn+2 + Fn, contradicting our original assumption, or all
the values from Fn+2 + Fn to Fn+3 − 1 are losing positions, also contradicting
our original assumption.

Since our original assumption must lead to a contradiction, it must be false,
which means there are an infinite number of values of N such that Bob can win.

Problem 5B. Proposed by Proposed by Alexander Monteith-
Pistor

Let S = {0, 1, 2, ..., 2020} and f : S → S satisfy

f(x)f(y)f(xy) = f(f(x+ y))
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for all x, y ∈ S with xy ≤ 2020 and x+ y ≤ 2020. Find the maximum possible
value of

2020∑
i=0

f(i)

Solution

We claim that the maximum value is 2020 · 1975 = 3989500. Throughout this
proof, let

k :=

2020∑
i=0

f(i)

Letting y = 0 we obtain f(0)2f(x) = f(f(x)) for all x ∈ S. Letting y = 1 (and
2020 6= x ∈ A) we obtain f(1)f(x)2 = f(f(x + 1)). Thus, f(0)2f(x + 1) =
f(1)f(x)2 for all 2020 6= x ∈ S. We now consider two cases.

Case 1: f(0) 6= 0. Then

f(x) =
f(1)

f(0)2
f(x− 1)2 (∗)

for all nonzero x ∈ S. Substituting x = y = 2 into the original equation,

f(2)2f(4) = f(f(4)) = f(0)2f(4)

Observe that if f(4) = 0, f(x) = 0 for all x ≥ 4 (by induction with (*)). In
this case, k ≤ 4 · 2020. Otherwise, f(2) = f(0) (since both are positive). Using
x = 2 in (*) we get f(2) = f(1). Therefore

f(1) =
f(1)

f(0)2
f(1)2

it follows by induction with (*) that f is constant. Let f(x) = c for all x ∈ S.
Then the original equation yields c3 = c which implies c = 0 or c = 1. Thus, in
this case, k = 0 or k = 2021.

Case 2: f(0) = 0. By the y = 0 substitution, f(f(x)) = 0 for all x ∈ S
which implies f(x)f(y)f(xy) = 0 for all x, y ∈ S (satisfying xy ≤ 2020). In
any such case, we can partition S into two sets A and B where f maps each
element of B to 0 and each element of A to a nonzero element of B. Further, if
xy ≤ 2020 then x, y, xy cannot all be in A.

We claim that A has at most 1976 elements. To prove this, let m be the
minimum element in A (if A is empty the claim follows trivially). We have
already determined that 0 and 1 are in B. If m ≥ 45 then A has at most 1976
elements so assume m ≤ 44. Then we can then create at least

p(m) :=

⌊
2020

m

⌋
−
⌊

2020

m2

⌋
≥
⌊

2020(m− 1)

m2

⌋
− 1
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pairs (n, nm) with distinct elements across all pairs. At least one element of
each pair cannot be in A. Note p(m) ≥ 45 for 1 ≤ m ≤ 42. Thus, if m ≥ 43 then
A has at most 1975 elements (taking into account 0). If m = 44, p(m) = 44,
442 = 1936 /∈ A therefore A has at most 1975 elements. This concludes the
proof of the claim.

By the above casework, if A has 1976 elements, then A = {x ∈ S : x ≥ 45}. f
maps every element of A to an element of B therefore k ≤ 1976·44 < 1975·2020.
Finally, if A has less than 1976 elements k ≤ 1975 · 2020 (f is bounded above
by 2020). Equality is achieved with the function

f(x) =

{
0 x ≤ 44 or x = 2020
2020 45 ≤ x ≤ 2019

Problem 21B. Proposed by Alexander Monteith-Pistor

Let An denote the number of tuples (a1, ..., an) of positive integers which satisfy
a1 = 1 and ak+1 | 2ak for all 1 ≤ k ≤ n− 1 (note A0 = 1). Prove that

An+1 =

n∑
i=0

AiAn−i

Solution

For all k ≥ 0, let Sk be the set of k-tuples satisfying the given conditions. For
any (a1, ..., an+1) ∈ Sn+1, let f(a1, ..., an+1) be the maximum i such that ai = 1.
We can count the number of elements in Sn+1 by counting the number of ele-
ments in Sn+1 which f maps to i for each i = 1, 2, ..., n, n+ 1.

Let f(a1, ..., an+1) = i for some 1 ≤ i ≤ n + 1. Then (a1, a2, ..., ai−1) ∈
Si−1. Further,

(
1
2ai+1, ..,

1
2an+1

)
∈ Sn−i+1 (ai+1 | 2 and ai+1 6= 1 so ai+1 =

2). Additionally, given any (b1, ..., bi−1) ∈ Si−1 and (bi+1, ..., bn+1) ∈ Sn−i+1,
(b1, ..., bi−1, 1, 2bi+1, ..., 2bn+1) ∈ Sn+1 with f(b1, ..., bi−1, 1, 2bi+1, ..., 2bn+1) = i.
Thus, the number of elements of Sn which f maps to i is Ai−1An−i+1. As f
maps every element of Sn+1 to a unique element of {1, ..., n+ 1},

An =

n+1∑
i=1

Ai−1An−i+1 =

n∑
j=0

AjAn−j

Problem 22B. Proposed by Alexander Monteith-Pistor

Find the number of different black and white colourings of an n × n grid such
that every square has exactly one black neighbour. Two squares are said to be
neighbours if they share an edge.
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Problem 23B. Proposed by Max Jiang

Mabel has a bag of n marbles whose weights are 1, 2, 3, . . . , n. She draws the
marbles one by one without replacement out of the bag. At any point, the
probably of drawing any given marble is proportional to its weight. For example,
if the bag had 3 marbles of weights 1, 2, and 4, the probability of drawing the
marble of weight 1, 2, and 4 are 1

7 ,
2
7 , and 4

7 , respectively. Find a closed form
formula for the probability that Mabel draws the marbles in order of increasing
weight.

Solution

Let marble k be the marble of weight k. We see that Mabel must draw marbles
1, 2, . . . , n in that exact order.
The probability of drawing marble 1 first is 1

n(n+1)
2

. Then, the probability of

drawing marble 2 after that is 2
n(n+1)

2 − 1·2
2

. In general, the probability of draw-

ing marble k after drawing marbles 1, 2, . . . , k − 1 is k
n(n+1)

2 − (k−1)k
2

. Thus, the

probability that Mabel draws all the marbles in order of increasing weight is

n∏
i=1

i
n(n+1)

2 − (i−1)·i
2

=

n∏
i=1

i
(n−(i−1))(n+i)

2

=

n∏
i=1

2i

(n− (i− 1))(n+ i)

= 2nn!

n∏
i=1

1

n− (i− 1)

n∏
i=1

1

n+ i

= 2nn!

n∏
i=1

1

i

n∏
i=1

1

n+ i

=
2nn!

(2n)!
.

Problem 24B. Proposed by Vedaant Srivastava

Donnie holds 5 exclusive parties in order to increase his popularity among his
538 friends. At each party, some of his 538 friends were present and some were
not. The ticket prices at each event were $2, $3, $3, $4, and $5 respectively.
Each event made over $1000 in ticket sales. Prove that Donnie can choose two
people out of his 538 friends such that at least one of them was present at each
party.
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Solution

Assume for contradiction that for each pair of people, there was at least one
party in which both people were absent.

Let S be the number of pairs of people absent at the same party counted over
all parties (ex : if two people are both absent in two different parties, this would
contribute 2 cases to S).
We establish contradictory bounds on S by counting in two ways.

As each party made over $1000 in ticket sales, we have that there were at least
500, 334, 334, 250, and 200 people who attended each of the parties, respectively.
This implies that there were at most 38, 204, 204, 288, and 338 people who were
absent at each party. Choosing the maximum number of pairs of absent people
at each party, we obtain that

S ≤
(

38

2

)
+

(
204

2

)
+

(
204

2

)
+

(
288

2

)
+

(
338

2

)
= 140, 396

However, for each pair of the 538 people, there was at least one party which
both people did not attend. This implies that

S ≥
(

538

2

)
= 144, 453

Combining both bounds, we get

144, 453 ≤ S ≤ 140, 396

which is clearly absurd. Thus by contradiction, there has to be some pair of
people such that at least one of them was present at each party.

Problem 25B. Proposed by Andy Kim

Let
p(x) = x5 + x4 + ax3 + bx2 + cx+ d

be a real polynomial with 1+i and 2+i as roots, where i2 = −1. Find a+b+c+d.

Solution

Since p is a real polynomial, the complex conjugates of these roots must also be
roots, so we have that 1 + i, 1− i, 2 + i, 2− i are roots. Let α be the fifth root.
Then, noting that the coefficient of x4 is 1, we have

α+ (1 + i) + (1− i) + (2 + i) + (2− i) = −1

and so
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α = −7

Then, we have all 5 roots, and thus

p(x) = (x+ 7)(x− (1 + i))(x− (1− i))(x− (2 + i))(x− (2− i))

and so

p(x) = (x+ 7)(x2 − 2x+ 2)(x2 − 4x+ 5)

Then, since p(1) = 2 + a+ b+ c+ d, we have

a+ b+ c+ d = p(1)− 2

= (1 + 7)(12 − 2(1) + 2)(12 − 4(1) + 5)− 2

= (8)(1)(2)− 2

= 14

Problem 26B Proposed by Andy Kim

Alice and Bob each have a bucket with 1 liter of water in it to start. Every
minute, Alice moves half of the water in her bucket to Bob’s, and Bob moves
a fourth of the water in his bucket to Alice’s. Assuming Alice and Bob are
immortal, find the limiting value of the amount of water in each bucket.

Solution

Let an and bn be the amount of water left in Alice’s and Bob’s bucket respec-
tively after n minutes, with a0 = b0 = 1.

Then, we have the following recurrence relation.

an =
1

2
an−1 +

1

4
bn−1

bn =
1

2
an−1 +

3

4
bn−1

This can be represented with matrices as(
an
bn

)
=

(
1
2

1
4

1
2

3
4

)(
an−1
bn−1

)
Letting

A =

(
1
2

1
4

1
2

3
4

)
we have



January 2, 2021 Proposed Math Problems Page 13

(
an
bn

)
= An

(
a0
b0

)
Then, we note that we have (can be found by diagonalization)

A =

(
1
2

1
4

1
2

3
4

)
=

(
1 −1
2 1

)(
1 0
0 1

4

)(
1
3

1
3

− 2
3

1
3

)
with (

1
3

1
3

− 2
3

1
3

)(
1 −1
2 1

)
=

(
1 0
0 1

)
so these two matrices are inverses. From this, we get

An =

(
1 −1
2 1

)(
1 0
0 1

4

)n( 1
3

1
3

− 2
3

1
3

)
=

(
1 −1
2 1

)(
1 0
0 ( 1

4 )n

)(
1
3

1
3

− 2
3

1
3

)
So, we have (

an
bn

)
=

(
1 −1
2 1

)(
1 0
0 ( 1

4 )n

)(
1
3

1
3

− 2
3

1
3

)(
a0
b0

)
and we have the limiting values as n goes to infinity as(

1 −1
2 1

)(
1 0
0 0

)(
1
3

1
3

− 2
3

1
3

)(
a0
b0

)
=

(
1
3

1
3

2
3

2
3

)(
1
1

)
=

(
2
3
4
3

)

Problem 27B. Proposed by Nicholas Sullivan

Consider a continuous function f(x) that satisfies f(x)f(y) = f(x) + f(y) −
f(xy), for any real numbers x, y 6= 0. If f(2) = 1

2 , then find all possible functions
f(x).

Solution

Since f(x)f(y) = f(x) + f(y)− f(xy), then we know that

f(xy) = f(x) + f(y)− f(x)f(y)

1− f(xy) = (1− f(x))(1− f(y)).

If we define g(x) = 1− f(x), then we have that

g(xy) = g(x)g(y).

Since this is true for all real numbers not equal to 0 or 1, then for any integer
n,

g(xn) = [g(x)]n.



January 2, 2021 Proposed Math Problems Page 14

Similarly, we can show that for any rational q, and positive real x,

g(xq) = [g(x)]q

g(−xq) = g(−1)[g(x)]q.

Thus, by continuity, we can say that for any positive real x,

g(x) = g(eln x)

= [g(e)]ln x

= xln g(e)

g(−x) = g(−1)g(eln x)

= g(−1)[g(e)]ln x

= g(−1)xln g(e)

If we let k = ln g(e), then this means that g(x) = xk for some real number k.
Thus, we can express f(x) as

f(x) =

{
1− xk x > 0

1− g(−1)(−x)k x < 0
.

The condition f(2) = 1
2 implies that

f(2) = 1− 2k

1

2
= 1− 2k

k = −1.

Thus, we can express f(x) as

f(x) =

{
1− 1

x x > 0

1− g(−1) 1
−x x < 0

.

Since [g(−1)]2 = g(1) = 1, then g(−1) = ±1. This gives two options for f(x).
If g(−1) = 1, then f(x) = 1− 1

|x| , and if g(−1) = −1, then f(x) = 1− 1
x .

Problem 28B. Proposed by DC

Find the relationship between a and b such that the maximum and the minimum
of the function defined on real numbers:

x2 + 2ax+ 1

x2 + 2bx+ 1

are satisfying max = −2 min.
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Solution

Using the notation
x2 + 2ax+ 1

x2 + 2bx+ 1
= m,

we obtain
(m− 1)x2 + 2(bm− a)x+m− 1 = 0.

In order to have real roots, the discriminant ∆ must be greater or equal to zero.
Consequently,

∆ = 4[(bm− a)2 − (m− 1)2] = 4[(b+ 1)m− a− 1]× [(b+ 1)m− a+ 1] ≥ 0.

Considering the sign of the expressions a−1,a+1, b−1 and b+1 we have three
out of four possible cases:
Case 1:

m ∈ (−∞, a− 1

b− 1
] ∪ [

a+ 1

b+ 1
,+∞)

and
a− 1

b− 1
= −2

a+ 1

b+ 1
.

(a− 1)(b+ 1) = −2(a+ 1)(b− 1)

and
ab+ a− b− 1 = −2ab+ 2a− 2b+ 2.

Finally
3ab− a+ b− 3 = 0

Case 2:

m ∈ [
a+ 1

b+ 1
,
a− 1

b− 1
]

and
a− 1

b− 1
= −2

a+ 1

b+ 1
.

With the same condition
3ab− a+ b− 3 = 0.

Case 3:

m ∈ (−∞, a+ 1

b+ 1
] ∪ [

a− 1

b− 1
,+∞)

and
a+ 1

b+ 1
= −2

a− 1

b− 1
.

(a+ 1)(b− 1) = −2(a− 1)(b+ 1)

and
ab− a+ b− 1 = −2ab− 2a+ 2b+ 2.
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Finally
3ab+ a− b− 3 = 0

Case 4:

m ∈ [
a− 1

b− 1
,
a+ 1

b+ 1
]

and
a+ 1

b+ 1
= −2

a− 1

b− 1
.

With the same condition
3ab+ a− b− 3 = 0.
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